
PARAMETERIZED FLOATING-POINT
MODULES

Progress Report
31 October, 2001

Pavle Belanović
Miriam Leeser
Northeastern University
Department of Electrical and Computer Engineering

page I

Contents

Contents .. I
1.0 Introduction.. 1
2.0 Schedule and Progress ... 2
3.0 Floating Point Formats... 3
4.0 Floating Point Modules.. 4

4.1 Denormalize (denorm)... 4
4.2 Round and Normalize (rnd_norm)... 5

4.2.1 Normalizer (normalizer) .. 5
4.2.2 Rounding Addition (round_add).. 6

4.3 Addition (fp_add) .. 7
4.3.1 Swap (swap)... 8
4.3.2 Shift and Adjust (shift_adjust) ... 8
4.3.3 Add/Subtract (add_sub) ... 9
4.3.4 Correction (correction) .. 9

4.4 Subtraction (fp_sub) .. 10
4.5 Accumulation (fp_acc) .. 10
4.6 Multiplication (fp_mul) ... 10
4.7 Multiply Accumulate (fp_mac) ... 11
4.8 Other Modules ... 11

4.8.1 Single Precision Adder (single_precision_adder).. 11
5.0 Simulation and Testing .. 14

5.1 Denormalize (denorm)... 14
5.2 Round and Normalize (rnd_norm)... 14

5.2.1 Normalizer (normalizer) .. 15
5.2.2 Rounding Addition (round_add).. 15

5.3 Addition (fp_add) .. 16
5.3.1 Swap (swap)... 17
5.3.2 Shift and Adjust (shift_adjust) ... 17
5.3.3 Add/Subtract (add_sub) ... 18
5.3.4 Correction (correction) .. 19

5.4 Subtraction (fp_sub) .. 20
5.5 Multiplication (fp_mul) ... 20
5.6 Other Modules ... 20

5.6.1 Single Precision Adder (single_precision_adder).. 20
6.0 Synthesis Results ... 22
7.0 Future Work... 24
8.0 Conclusions.. 25
References.. 26

Parameterized Floating-Point Modules 31 October, 2001

page 1

1.0 Introduction

The aim of this project is to produce a library of fully pipelined and parameterized modules for performing
floating-point arithmetic operations, targeted for implementation on Annapolis Microsystems
reconfigurable computing engines. Following this, the library components are to be used to implement a
solution to an application of interest using floating point arithmetic. Basic library components are
Denormalize, Round and Normalize, Addition, Subtraction, Multiplication, Accumulation and Multiply
Accumulate.

Section 2 of this report contains detailed progress information, as well as a timetable for completion of
future goals. Following this is section 3, which briefly describes the IEEE floating point format in detail
sufficient for the scope of this report. Also contained in this section is a discussion of our approach to
parameterization of the floating point modules. All floating point modules are described in section 4 of this
report. Accounts of functionality, pipelining and entity definitions for each module are included.
Simulation and testing of each of the floating point modules are the subject of section 5. Section 6
contains a discussion on synthesis results to date. Future work is discussed in section 7 and the report is
concluded in section 8.

Parameterized Floating-Point Modules 31 October, 2001

page 2

2.0 Schedule and Progress

Status of each of the floating point modules in the library, for both simulation and synthesis, are given in
Table 1.

Module Simulation Synthesis Tested in HW

Denormalize � � �

Round and Normalize � � �

Addition � � �

Subtraction � � �

Accumulation Outstanding Outstanding Outstanding

Multiplication Outstanding Outstanding Outstanding

Multiply Accumulate Outstanding Outstanding Outstanding

Table 1 : Status

Schedule for future work is shown in Table 2.

Objective Date

Synthesize Multiply module 15 December 2001

Simulate, synthesize and test Fix2Float and Float2Fix modules 15 December 2001

Parameterized K-Means using floating-point arithmetic 15 December 2001

Table 2 : Future Work

Parameterized Floating-Point Modules 31 October, 2001

page 3

3.0 Floating Point Formats

The IEEE single precision floating point number format specifies complete bitwidth of 32 bits, divided
into (from MSB to LSB) 1 sign bit, 8 exponent bits and 23 mantissa bits. Denoting the sign bit with s,
exponent with e, and mantissa with f, an IEEE single precision floating point number represents the real
number:

() BIASes f −××− 2).1(1

In the above equation, BIAS depends on the number of exponent bits and is 127 in the IEEE single
precision floating point format. The 1 in front of the mantissa in the equation refers to the implied 1, which
is always present when the number is normal. Since it is always present, it need not be represented
explicitly and, to save bitwidth, it is not represented in the IEEE single precision floating point format.

To fully describe any floating point format, two quantities are needed: bitwidth of the exponent and that of
the mantissa. The sign is always represented with 1 bit only. Hence, to fully parameterize any floating
point operation, two parameters are sufficient. Within this project, the two parameters will be referred to as
exp_bits for exponent bitwidth and man_bits for mantissa bitwidth. Implementation of these
parameters in the VHDL descriptions of the parameterized modules is achieved through generic
statements.

The two parameters are fixed at synthesis time by the top level module which instantiates them with
appropriate values. Therefore, these parameters are not inputs to, or outputs from, any of the modules and
are thus not represented in their entity diagrams.

Parameterized Floating-Point Modules 31 October, 2001

page 4

4.0 Floating Point Modules

Modules shown in Table 2 form the floating point library. Also indicated in the table are the number of
pipeline stages in the module, or the latency of the module in clock cycles.

Module Pipeline Stages

Denormalize 0

Round and normalize 2

Addition 4

Subtraction 4

Accumulation ?

Multiplication ?

Multiply Accumulate ?

Table 3 : Floating Point Modules

The above floating point modules are fully pipelined. To facilitate their connection into longer pipelines,
each module is provided with a READY input, indicating data on the inputs to the module is valid. Also,
each module has a DONE output, which is active high when output from the module is valid.

Exceptions may arise in floating point calculations and may affect part of, or the entire pipeline. Thus,
each module is capable of handling two exception conditions:

External source of exception – When an exception occurs earlier on in the pipeline, upstream from the
module, it is important for that exception condition to percolate down to the end of the pipeline. Thus,
the module will accept the exception at its input, not process incoming data as it is not valid, and pass on
the exception condition to the rest of the pipeline.
Internal source of exception – Exceptions may arise during the operation of the floating point module.
In such instances, the module will generate an exception condition and pass it on to the rest of the
pipeline.

To implement both of these exception conditions, each module has an EXCEPTION_IN input and an
EXCEPTION_OUT output.

4.1 Denormalize (denorm)

The function of the denormalize module is to explicitly introduce the implied ‘1’ in the mantissa, as
represented in “ 1.f ” in the equation above.
The entity of the denormalize module (denorm) is shown below.

Parameterized Floating-Point Modules 31 October, 2001

page 5

Denormalize
(denorm)

INPUTS

IN1
READY

EXCEPTION_IN

OUTPUTS

OUT1
DONE

EXCEPTION_OUT

The denormalize module is meant to be placed at the beginning of a pipeline of modules, so as to
“unpack” a floating point number by introducing the implied ‘1’. This is meant to be reversed by the round
and normalize module, as explained below. The denormalize module, due to its simplicity, is a purely
combinational circuit and does not take a clock cycle to perform.

4.2 Round and Normalize (rnd_norm)

For a pipeline of modules to produce a normalized floating point number on the output, it must have a
round and normalize module at its end. This module performs several functions:

• Normalizing the input
• Performing a rounding addition, if necessary
• Truncating the output to the appropriate bitwidth

Implementation of the round and normalize module is structural, composed of two sub-modules:
normalizer (to perform the first function in the list above) and rounding addition (for the latter two
functions). The ‘round’ input is used to select the rounding mode, as explained in section 4.2.2.

The entity of the round and normalize module is shown below.

Round and Normalize
(rnd_norm)

INPUTS

IN1
READY

CLK
ROUND

EXCEPTION_IN

OUTPUTS

OUT1
DONE

EXCEPTION_OUT

4.2.1 Normalizer (normalizer)

The first function of the round and normalize module is to normalize the input, which involves two
operations: shifting the mantissa to the left, until its MSB is ‘1’ and subtracting from the exponent the
number of times the mantissa was shifted left. For example:

68 102887.110012887.0 ×=×

Parameterized Floating-Point Modules 31 October, 2001

page 6

In the above example, the mantissa is shifted left twice, and thus the exponent has 2 subtracted from it.
The entity of the normalizer module is shown below.

Normalizer
(normalizer)

INPUTS

MAN_IN
EXP_IN
READY

CLK
EXCEPTION_IN

OUTPUTS

MAN_OUT
EXP_OUT

DONE
EXCEPTION_OUT

4.2.2 Rounding Addition (round_add)

Implemented rounding schemes in this project are round to nearest (default) and round to zero. Rounding,
of course, implies throwing away some bits of the mantissa and the rounding schemes deal with this
truncation in different ways. To round to nearest, we add a ‘1’ to the MSB of the slice of the mantissa to
be thrown away, and then truncate. To round to zero, we just truncate without the addition.

10011001

10011010

1101

0101

1000+

tru
nc

at
e

he
re

result rounded to nearest

10011001

10011001

1101

1101

tru
nc

at
e

he
re

result rounded to zero

no addition

To choose between the rounding schemes, a 1-bit (‘round’) input into the module is sufficient. The input is
encoded as: ‘0’ signals round to zero, ‘1’ signals round to nearest. Thus, this input is used as an active high
enable signal into an adder that adds the ‘1’ to the MSB of the slice of mantissa to be thrown away. The
rouding addition module also truncates the output to the required bitwidth. Given below is the entity for
the rounding addition module.

Parameterized Floating-Point Modules 31 October, 2001

page 7

Rounding Addition
(round_add)

INPUTS

MAN_IN
READY

CLK
ENABLE

EXCEPTION_IN

OUTPUTS

MAN_OUT
DONE

EXCEPTION_OUT

4.3 Addition (fp_add)

Floating point addition algorithm is composed of the following steps:

• Make sure the input with larger magnitude is on input 1 (swap)
• Align the mantissas (shift and adjust)
• Add or subtract the mantissas (add/subtract)
• Shift mantissa right and increment the exponent if overflow in addition occurred (correction)

The addition module (fp_add) is described structurally from the above modules, as shown below.

READY OP1 OP2 EXCEPTION_IN

s1 s2

e1 e2

f1

f2

s1

op

overflow

s e f

DONE RESULT EXCEPTION_OUT

man_bits
exp_bits

swap

shift_adjust

add_sub

correction

fp_add module

Parameterized Floating-Point Modules 31 October, 2001

page 8

Addition
(fp_add)

INPUTS

OP1
OP2

READY
CLK

EXCEPTION_IN

OUTPUTS

RESULT
DONE

EXCEPTION_OUT

Please note that the addition operation is performed with one guard bit. Hence, the bitwidth of the
mantissa, and thus the overall result, at the output of the addition module is one bit wider than at its input.

4.3.1 Swap (swap)

Processing within the addition algorithm needs to assume that one of the inputs, say input 1, always has
magnitude higher or equal to that of the other input, in this case input 2. Since the inputs have to be sorted
into a large one and a small one, they may need to be swapped. This conditional swap is the function of the
swap module. Its entity is given below.

Swap
(swap)

INPUTS

IN1
IN2

READY
CLK

OUTPUTS

OUT1
OUT2
DONE

4.3.2 Shift and Adjust (shift_adjust)

Mantissas of the two inputs are to be added, but they have to be appropriately aligned before the addition.
In other words, the mantissa of the smaller number (f2) has to be aligned to match the mantissa of the
larger number (f1). This translates into shifting the smaller number’s mantissa (f2) right. The difference
between the exponents, (e1-e2), is how many spaces the mantissa f2 is to be shifted. This number is
always non-negative, since the swap module ensures e1 ≥ e2. The shift and adjust module performs this
variable shift function. Its entity is shown below.

Parameterized Floating-Point Modules 31 October, 2001

page 9

Shift and Adjust
(shift_adjust)

INPUTS

E1
E2
F2

READY
CLK

OUTPUTS

E_OUT
F_OUT
DONE

4.3.3 Add/Subtract (add_sub)

The aligned mantissas of the two inputs have to be added or subtracted to produce the mantissa of the final
result. The exponent of the final result is the exponent of the larger input, since both mantissas were
aligned to this exponent. The operation to be performed depends on the signs of the two inputs. The
operation is encoded with one bit, op, as follows.

s1 s2 op
+ 0 + 0 + 1
+ 0 - 1 - 0
- 1 + 0 - 0
- 1 - 1 + 1

The above table indicates op = s1 XNOR s2 . The add/subtract module also passes on the information to
the module correction on whether an overflow occurred during addition. The entity of the add_sub module
is given below.

Add/Subtract
(add_sub)

INPUTS

F1
F2

READY
OP
CLK

OUTPUTS

F_OUT
OVERFLOW

DONE

4.3.4 Correction (correction)

If an overflow occurs during addition of mantissas, it is necessary to correct the result. This operations
involves two steps: right shift result mantissa by one place, filling the MSB with ‘1’, and incrementing the
result exponent to reflect the shift. Hence, the overflow signal of the add/subtract module acts as an enable
of the correction module which will either correct the incoming exponent and mantissa or just pass them
through as they are. In its current version, this module incorporates checking for overflow on incrementing
the exponent. The entity of the correction module is given below.

Parameterized Floating-Point Modules 31 October, 2001

page 10

Correction
(correction)

INPUTS

F
E
S

READY
CLEAR

ENABLE
CLK

OUTPUTS

RESULT
EXCEPTION_OUT

DONE

4.4 Subtraction (fp_sub)

Because of the similarity of the addition and subtraction operations, especially in the floating point format,
it is possible to reuse the entire structure of the fp_add module to construct the fp_sub module. Because:

a – b = a + (– b),
 the only structural difference between the two modules is a single inverter on the sign bit of the second
input in the subtraction module (fp_sub).

4.5 Accumulation (fp_acc)

Accumulation of floating-point numbers is performed by the fp_acc module. This module has yet to be
implemented in either simulation or hardware at this time. The entity of the accumulator module is shown
below.

Accumulation
(fp_acc)

INPUTS

OP
READY
CLEAR
ROUND

CLK
EXCEPTION_IN

OUTPUTS

VALUE
DONE

EXCEPTION_OUT

4.6 Multiplication (fp_mul)

The multiplication module computes the product of two floating point numbers. This module is composed
of three pipeline stages. Currently, simulation and testing of this component are complete; synthesis of the
module is scheduled for near future (see section 2). Entity of the fp_mul module is as shown below.

Parameterized Floating-Point Modules 31 October, 2001

page 11

Multiplication
(fp_mul)

INPUTS

OP1
OP2

READY
CLK

EXCEPTION_IN

OUTPUTS

RESULT
DONE

EXCEPTION_OUT

4.7 Multiply Accumulate (fp_mac)

The multiply accumulate module has yet to be implemented in either simulator or hardware at this time.
This module will be analogous to the accumulate module and will have an entity as represented below.

Multiply Accumulate
(fp_mac)

INPUTS

OP
READY
CLEAR
ROUND

CLK
EXCEPTION_IN

OUTPUTS

VALUE
DONE

EXCEPTION_OUT

4.8 Other Modules

Other modules in the project, not described above, are non-parameterized instances in the design space,
such as single_precision_adder or half_precision_subtractor. These are top-level modules, encompassing
several of the parameterized modules described above. All these modules are constructed as examples of
how to pipeline the parameterized floating point modules into working, implementation-ready modules.

4.8.1 Single Precision Adder (single_precision_adder)

The single_precision_adder module is described in VHDL structurally, instantiating two denormalize
modules, one addition module and one round and normalize module. All these modules are instantiated to
mantissa bitwidth of 23 bits and exponent bitwidth of 8 bits. This is the IEEE single precision format. The
structure and the entity of the single_precision_adder are shown below.

Parameterized Floating-Point Modules 31 October, 2001

page 12

Single Precision Adder
(single_precision_adder)

INPUTS

IN1
IN2

READY
ROUND

CLK
EXCEPTION_IN

OUTPUTS

OUT1
DONE

EXCEPTION_OUT

denormdenorm

rnd_norm

fp_add

de
la

y
of

 5
 c

yc
le

s

ready

DONE OUT1 EXCEPTION_OUT

IN1 IN2READY EXCEPTION_IN ROUND

IEEE single precision adder

Since single_precision_adder is a top level module, it is found at the top of the hierarchy tree, as shown
below. Please note that the modules with a heavy box outline, found at the leaves of the tree, are
primitives, described at gate level.

Parameterized Floating-Point Modules 31 October, 2001

page 13

pex_mem_ex

wildstar
_interface

core

single
_precision_adder

fp_adddenorm rnd_norm

Hierarchy tree for implementation of the single_precision_adder module

fp_add

correctionadd_subshift_adjustswap

parameterized_
comparatormux2 shifter_controlparameterized_

subtractor parameterized_
adder

parameterized_
mux

parameterized_
adder

parameterized_
mux

mux2 mux2
one_bit

_comparator
parameterized_

or_gate

parameterized_
mux

mux2

parameterized_
variable_shifter

parameterized_
mux

mux2 mux2

parameterized_
variable_shifter_row

Hierarchy tree of fp_add sub-module

rnd_norm

normalizer round_add

parameterized_
priority_encoder

parameterized_
variable_shifter

parameterized_
comparator

parameterized_
subtractor

parameterized_
adder

one_bit
_comparator

parameterized_or
_gate

parameterized_
mux

mux2 mux2

parameterized_
variable_shifter_row

Hierarchy tree of rnd_norm sub-module

Parameterized Floating-Point Modules 31 October, 2001

page 14

5.0 Simulation and Testing

The design cycle for each parameterized floating point module calls first for a simulation and testing stage,
followed by a synthesis stage. This section is dedicated to the simulation and testing stage of each of the
modules.

After each module has been described in VHDL, it was necessary to debug and verify the description
using a simulator, which is ModelSim/Plus 5.2e for this project. To ensure completeness of debugging at
this stage, and thus minimize time spent debugging at the synthesis stage, a set of test vectors was
developed for each of the floating point modules and sub-modules in this project, all the way down the
hierarchy and including the primitives (such as full_adder for example).

The remainder of this section lists all the parameterized floating point modules that have been taken
through the simulation and testing stage of their design. This will include all the first level sub-modules.
For each module and sub-module, we include test cases and corresponding test vectors.

5.1 Denormalize (denorm)

The functionality of the denormalize module is relatively simple; it has to widen the datapath by one bit. It
does so by inserting a logic high value, ‘1’, between the exponent and mantissa sections of the floating
point number. In other words, the denormalize module makes explicit the implied ‘1’ of the mantissa of a
normal floating point number. Hence, there is only one case to test for: insertion of the implied ‘1’.

IN1: 150FBD1516 = 0001 0101 0000 1111 1011 1101 0001 01012
OUT1: 02A8FBD1516 =0 0010 1010 1000 1111 1011 1101 0001 01012

The denormalize module generates an exception if the input has an all-zero exponent.

5.2 Round and Normalize (rnd_norm)

Round and normalize module (rnd_norm) consists of two sub-modules: normalizer and rounding addition.
In functionality, the round and normalize module takes in a floating point number, which is not guaranteed
normal, and outputs a normal, narrower, rounded number, which does not include the implied ‘1’. The
input bitwidth is always wider than the output bitwidth, and the narrowing of the datapath is achieved
through the rounding method specified by the round input.

Hence, the test cases for this module are:

• no normalization, round to zero,
• normalization, round to zero,
• no normalization, round to nearest,
• normalization, round to nearest.

Test vectors and results for each case are given below respectively, for a scenario of 1-7-12 (s-e-f) 20-bit
floating point number being input, narrowed to a 1-7-8 16-bit floating point number at the output.

IN1: 5A8FB16 = 0101 1010 1000 1111 10112
ROUND: 0
OUT: 5A1F16 = 0101 1010 0001 11112

Parameterized Floating-Point Modules 31 October, 2001

page 15

IN1: DB47D16 = 1101 1011 0100 0111 11012
ROUND: 0
OUT: DA1F16 = 1101 1010 0001 11112

IN1: 5A8FB16 = 0101 1010 1000 1111 10112
ROUND: 1
OUT: 5A1F16 = 0101 1010 0001 11112

IN1: DB47D16 = 1101 1011 0100 0111 11012
ROUND: 1
OUT: DA2016 = 0101 1010 0010 00002

5.2.1 Normalizer (normalizer)

The normalizer module has the function of normalizing the floating point number at its input. This
operation involves two parts: shifting the mantissa left until its MSB is ‘1’, and decrementing the exponent
to reflect the shift in the mantissa. Please note that if the input number is already normal, the output is
equal to the input. Hence, the test cases for this module are:

• no normalization required,
• normalize.

Below given are test vectors for these two cases respectively.

MAN_IN: 8C16 = 1000 11002
EXP_IN: A16 = 10102
MAN_OUT: 8C16 = 1000 11002
EXP_OUT: A16 = 10102

MAN_IN: 2316 = 0010 00112
EXP_IN: A16 = 10102
MAN_OUT: 8C16 = 1000 11002
EXP_OUT: 816 = 10002

5.2.2 Rounding Addition (round_add)

The rounding addition stage of the round normalize module has the function of enabled addition, as
explained in section 4.2.2. The input to the module is a normal number, while the output is a normal and
rounded number with the MSB of the mantissa, which is assumed ‘1’, removed. Test cases for this module
are:

• round to zero (no addition),
• round to nearest, no effect,
• round to nearest, with effect.

Given below are test vectors using a scenario of 12-bit mantissa being narrowed to an 8-bit mantissa.

MAN_IN: 9DB16 = 1001 1101 10112
ENABLE: 0

Parameterized Floating-Point Modules 31 October, 2001

page 16

MAN_OUT: 3B16 = 0011 10112

MAN_IN: 9DB16 = 1001 1101 10112
ENABLE: 1
MAN_OUT: 3B16 = 0011 10112

MAN_IN: 9DF16 = 1001 1101 11112
ENABLE: 1
MAN_OUT: 3C16 = 0011 11002

5.3 Addition (fp_add)

The addition module, fp_add, is composed of 4 sub-modules: swap, shift_adjust, add_sub and correction.
Given two denormalized floating-point numbers, the fp_add module will produce their sum as a 1 bit
wider floating point number. Test cases for this module are:

• addition, no swap, same exponent, no overflow,
• addition, no swap, same exponent, overflow,
• addition, no swap, small difference in exponents,
• addition, no swap, large difference in exponents,
• addition, swap, small difference in exponents,
• subtraction, no swap, small difference in exponents,
• subtraction, swap, small difference in exponents,
• subtraction, no swap, large difference in exponents.

OP1: 5D4BDA5116 = 0101 1101 0100 1011 1101 1010 0101 00012
OP2: 5D0ADBF216 = 0101 1101 0000 1010 1101 1011 1111 00102
RESULT: 0BAAD6C8616 = 0 1011 1010 1010 1101 0110 1100 1000 01102

OP1: 5D4BDA5116 = 0101 1101 0100 1011 1101 1010 0101 00012
OP2: 5D4ADBF216 = 0101 1101 0100 1010 1101 1011 1111 00102
RESULT: 0BB96B64316 = 0 1011 1011 1001 0110 1011 0110 0100 00112

OP1: 5D4BDA5116 = 0101 1101 0100 1011 1101 1010 0101 00012
OP2: 5C4ADBF216 = 0101 1100 0100 1010 1101 1011 1111 00102
RESULT: 0BABD229B16 = 0 1011 1010 1011 1101 0010 0010 1001 10112

OP1: 5D4BDA5116 = 0101 1101 0100 1011 1101 1010 0101 00012
OP2: 4C4ADBF216 = 0100 1100 0100 1010 1101 1011 1111 00102
RESULT: 0BA97B4A216 = 0 1011 1010 1001 0111 1011 0100 1010 00102

OP1: 5D4BDA5116 = 0101 1101 0100 1011 1101 1010 0101 00012
OP2: 5DCADBF216 = 0101 1101 1100 1010 1101 1011 1111 00102
RESULT: 0BBE1923516 = 0 1011 1011 1110 0001 1001 0010 0011 01012

OP1: 5D4BDA5116 = 0101 1101 0100 1011 1101 1010 0101 00012
OP2: DCC3DA5116 = 1101 1100 1100 0011 1101 1010 0101 00012
RESULT: 0BA53DA5116 = 0 1011 1010 0101 0011 1101 1010 0101 00012

OP1: 5D4BDA5116 = 0101 1101 0100 1011 1101 1010 0101 00012
OP2: DDC3DA5116 = 1101 1101 1100 0011 1101 1010 0101 00012

Parameterized Floating-Point Modules 31 October, 2001

page 17

RESULT: 1BB3BDA5116 = 1 1011 1011 0011 1011 1101 1010 0101 00012

OP1: 5D4BDA5116 = 0101 1101 0100 1011 1101 1010 0101 00012
OP2: C5C3DA5116 = 1100 0101 1100 0011 1101 1010 0101 00012
RESULT: 0BA97B4A216 = 0 1011 1010 1001 0111 1011 0100 1010 00102

5.3.1 Swap (swap)

The first part of the addition algorithm for floating point numbers demands that the operands be sorted into
the larger and the smaller one, based on magnitude. This operation is a conditional swap. Since magnitude
depends on the exponent primarily and the mantissa secondarily, five cases need to be tested:

• different exponents, no swap, (based on exponent)
• different exponents, swap, (based on exponent)
• same exponent, no swap, (based on exponent, mantissa)
• same exponent, swap (based on exponent, mantissa)
• same number.

Test vectors for these cases are given below.

IN1: 58E9AE2916 = 0101 1000 1110 1001 1010 1110 0010 10012
IN2: D77B0A4116 = 1101 0111 0111 1011 0000 1010 0100 00012
OUT1: 58E9AE2916 = 0101 1000 1110 1001 1010 1110 0010 10012
OUT2: D77B0A4116 = 1101 0111 0111 1011 0000 1010 0100 00012

IN1: D77B0A4116 = 1101 0111 0111 1011 0000 1010 0100 00012
IN2: 58E9AE2916 = 0101 1000 1110 1001 1010 1110 0010 10012
OUT1: 58E9AE2916 = 0101 1000 1110 1001 1010 1110 0010 10012
OUT2: D77B0A4116 = 1101 0111 0111 1011 0000 1010 0100 00012

IN1: D77B0A4116 = 1101 0111 0111 1011 0000 1010 0100 00012
IN2: 5769AE2916 = 0101 0111 0110 1001 1010 1110 0010 10012
OUT1: D77B0A4116 = 1101 0111 0111 1011 0000 1010 0100 00012
OUT2: 5769AE2916 = 0101 0111 0110 1001 1010 1110 0010 10012

IN1: 5769AE2916 = 0101 0111 0110 1001 1010 1110 0010 10012
IN2: D77B0A4116 = 1101 0111 0111 1011 0000 1010 0100 00012
OUT1: D77B0A4116 = 1101 0111 0111 1011 0000 1010 0100 00012
OUT2: 5769AE2916 = 0101 0111 0110 1001 1010 1110 0010 10012

IN1: 5769AE2916 = 0101 0111 0110 1001 1010 1110 0010 10012
IN2: 5769AE2916 = 0101 0111 0110 1001 1010 1110 0010 10012
OUT1: 5769AE2916 = 0101 0111 0110 1001 1010 1110 0010 10012
OUT2: 5769AE2916 = 0101 0111 0110 1001 1010 1110 0010 10012

5.3.2 Shift and Adjust (shift_adjust)

The shift and adjust module aligns the mantissas of the two operands by shifting the smaller operand’s
mantissa right. The amount of shift required is determined through a subtraction of the two exponents. If
the difference in the exponents is larger than the number of mantissa bits, the smaller mantissa is shifted

Parameterized Floating-Point Modules 31 October, 2001

page 18

out of bounds, i.e. becomes all zeros. Bitwidth of the mantissa expands by one (guard) bit. Thus, the test
cases for this module are:

• no shift required (equal exponents),
• shift within bounds (small difference in exponents),
• shift right on bound (critical difference in exponents),
• shift out of bounds (large difference in exponents).

Below are test vectors and results for above test cases respectively.

E1: A16 = 10102
E2: A16 = 10102
F2: 8B16 = 1000 10112
F_OUT: 11616 = 1 0001 01102

E1: 816 = 10002
E2: 316 = 00112
F2: CA16 = 1100 10102
F_OUT: 00C16 = 0 0000 11002

E1: A16 = 10102
E2: 116 = 00012
F2: AB16 = 1010 10112
F_OUT: 00016 = 0 0000 00002

E1: F16 = 11112
E2: 416 = 01002
F2: BA16 = 1011 10102
F_OUT: 00016 = 0 0000 00002

5.3.3 Add/Subtract (add_sub)

The add/subtract module is used in adding or subtracting mantissas of the two operands. An addition
operation may or may not produce an overflow (‘carry out’ of the adder). Thus, the test cases for the
add/subtract module are:

• addition to zero,
• addition, no overflow,
• addition, overflow,
• subtraction.

F1: AB16 = 1010 10112
F2: 0016 = 0000 00002
OP: 1

F_OUT: AB16 = 1010 10112
OVERFLOW: 0

F1: AB16 = 1010 10112
F2: 1016 = 0001 00002
OP: 1

F_OUT: BB16 = 1011 10112

Parameterized Floating-Point Modules 31 October, 2001

page 19

OVERFLOW: 0

F1: AB16 = 1010 10112
F2: 8016 = 1000 00002
OP: 1

F_OUT: 2B16 = 0010 10112
OVERFLOW: 1

F1: AB16 = 1010 10112
F2: 8016 = 1000 00002
OP: 0

F_OUT: 2B16 = 0010 10112
OVERFLOW: 0

5.3.4 Correction (correction)

The operation of the correction module is that of shifting the mantissa of the result exactly one bit to the
right, filling the vacant MSB with ‘1’. Also, the exponent must be incremented to reflect this shift. This
operation is enabled by the overflow output of the add/subtract module. Also, in the case of an exception,
the output of the correction module is set to all zeros. Hence, the test cases for this module are:

• no correction,
• correction,
• clear.

Listed below are test vectors and results for the cases above.

S: 1

E: A16 = 10102
F: 5F16 = 0101 11112
ENABLE: 0

CLEAR: 0

RESULT: 1A5F16 = 1 1010 0101 11112

S: 0
E: A16 = 10102
F: 5F16 = 0101 11112
ENABLE: 1

CLEAR: 0

RESULT: 0BAF16 = 0 1011 1010 11112

S: 0

E: A16 = 10102
F: 5F16 = 0101 11112
ENABLE: 1

CLEAR: 1

RESULT: 000016 = 0 0000 0000 00002

Parameterized Floating-Point Modules 31 October, 2001

page 20

5.4 Subtraction (fp_sub)

The operation of the fp_sub module is virtually identical to the operation of the fp_add module, since their
structure is the same, except the fp_sub module includes an inverter on the sign bit of the second operand.
Hence, the operation of this module, as well as all its sub-modules has already been verified. Given below
is an example of IEEE single precision subtraction, as executed by the module
single_precision_subtractor, which includes the the fp_sub module.

Decimal IEEE single precision number
23.279462 => 41BA3C57
201.779142 => 4349C776

23.279462 – 201.779142 = -178.499680 (real answer)

Answer from module = C3327FEC = -178.499694824 Correct to 5th decimal place.

5.5 Multiplication (fp_mul)

Module fp_mul has been designed and tested in simulation, but has not been implemented in hardware. It
performs a floating point multiplication of its two operands. Thus, the test cases for this module are:

• multiplication,
• exception in.

Given below are test vectors for the two test cases, based on the scenario of 1-6-9 (s-e-f) format floating
point numbers as inputs.

OP1: 477216 = 0100 0111 0111 00102
OP2: 517616 = 0101 0001 0111 01102
EXC.IN: 0
RESULT: 5B0E16 = 0101 1011 0000 11102

OP1: 477216 = 0100 0111 0111 00102
OP2: 517616 = 0101 0001 0111 01102
EXC.IN: 0
RESULT: 5B0E16 = 0101 1011 0000 11102

5.6 Other Modules

The only high-level, non-parameterized module simulated and tested in this project is the
single_precision_adder.

5.6.1 Single Precision Adder (single_precision_adder)

This module incorporates instances of the denorm, fp_add and rnd_norm modules. All of these
parameterized modules have been tested, as shown above. Test cases for the non-parameterized
single_precision_adder module are:

• both operands positive,
• one positive, other negative,

Parameterized Floating-Point Modules 31 October, 2001

page 21

• both negative,
• one much larger than other,
• same exponent, causing correction module to work.

Below is a set of test vectors and results for each of the above cases, respectively.

OP1: 4B2D064F16 = 0100 1011 0010 1101 0000 0110 0100 11112
OP2: 4A47912716 = 0100 1010 0100 0111 1001 0001 0010 01112
RESULT: 4B5EEA9916 = 0100 1011 0101 1110 1110 1010 1001 10012

OP1: CB2D064F16 = 1100 1011 0010 1101 0000 0110 0100 11112
OP2: 4A47912716 = 0100 1010 0100 0111 1001 0001 0010 01112
RESULT: CAF6440B16 = 1100 1010 1111 0110 0100 0100 0000 10112

OP1: CB2D064F16 = 1100 1011 0010 1101 0000 0110 0100 11112
OP2: CA47912716 = 1100 1010 0100 0111 1001 0001 0010 01112
RESULT: CB5EEA9816 = 1100 1011 0101 1110 1110 1010 1001 10002

OP1: 4A312A5316 = 0100 1010 0011 0001 0010 1010 0101 00112
OP2: 41586CE616 = 0100 0001 0101 1000 0110 1100 1110 01102
RESULT: 4A312A8916 = 0100 1010 0011 0001 0010 1010 1000 10012

OP1: 4A512A5316 = 0100 1010 0101 0001 0010 1010 0101 00112
OP2: 4A586CE616 = 0100 0101 0101 1000 0110 1100 1110 01102
RESULT: 4AD4CB9D16 = 0100 1010 1101 0100 1100 1011 1001 11012

Parameterized Floating-Point Modules 31 October, 2001

page 22

6.0 Synthesis Results

Module single_precision_adder, including all its sub-modules, has been synthesized and tested on
the WildStar reconfigurable computing engine. This hardware implementation correctly operated on the
same set of test vectors as presented in section 5.7.1.

The hierarchy of modules on the WildStar board begins with the wildstar_interface module, which
contains a state machine, memory interfaces and an instance of the module core. Various architectures of
the module core exist and can be chosen from. Each architecture is structural, instantiating one or more
floating point modules. Of interest is the architecture single_precision_adder_core_arch, which
instantiates exactly one single_precision_adder module and connects its inputs and outputs to the
pipelines leading from and to memory on the WildStar board respectively. This structure is depicted
below.

Wildstar board
wildstar_interface

core
single_precision_adder

2

1

Hence, the only parts of this design that consume non-trivial area are the interface circuitry, indicated
above as area 1, and the circuitry of the core, indicated as area 2. The former is a fixed cost, unavoidable
for designs on the WildStar board and present once for how ever many functional units there are in the
design. The latter is a proportional area cost, indicative of the incremental cost of adding one more
functional unit to the design.

Synthesis experiments to date indicate that the fixed cost of the WildStar interface is approximately 1200
slices, while the cost of an IEEE single precision adder circuit, including denormalizing and normalizing
within each module, is approximately 350 slices. The cost of a half precision adder circuit, based on 1-4-
11 (s-e-f) format, is approximately 150 slices.

Given that the total area of one of the XCV 1000 processing elements on the WildStar board is 12288
slices and that a practical maximum of 85% of the chip is applicable to a normal design, due to routing
overheads, the total useful area is:

slices 104451228885.0 ≈×

Thus, an approximate total number of single_precision_adder cores that can be fit onto one
XCV1000 chip on the WildStar board is:

Parameterized Floating-Point Modules 31 October, 2001

page 23

() units functional 26
350

120010445 ≈−

Similarly, an approximate total number of half_precision_adder cores that can be fit onto one
processing element is:

() units functional 61
150

120010445 ≈−

Parameterized Floating-Point Modules 31 October, 2001

page 24

7.0 Future Work

As indicated by the schedule of work in section 2.0, most of the future work in this project will be focused
on synthesis of existing and new floating point arithmetic modules.

Multiply module, fp_mul, has been simulated and tested, as shown in section 5.6, and its synthesis will
follow as one of the next steps in the project.

New modules for conversion to and from fixed point numbers, Fix2Float and Float2Fix, will be designed,
simulated tested and synthesized.

An example application is envisaged as an important part of this project, to demonstrate the use and
effectiveness of the floating point modules developed. K-means image clustering is a suitable algorithm
and will be implemented using the floating point modules of this project.

Parameterized Floating-Point Modules 31 October, 2001

page 25

8.0 Conclusions

Simulation, testing, synthesis and hardware implementation of floating modules in this project is
progressing to the point that most of the modules have gone through the entire design process. Simulation
and testing of each module has ensured correct operation of that module’s description, as well as smooth
transition into synthesized hardware.

Parameterized floating point addition is available in hardware, on the WildStar reconfigurable computing
engine. Instances of IEEE single precision and half precision in the 1-7-11 (s-e-f) format have been
synthesized. Preliminary results show that approximately 26 single precision units or 61 half precision
units can fit onto a single processing element of the WildStar board.

Future work in this project includes synthesis of floating point multiplication, conversion of floating point
numbers to and from fixed point, as well as an example application, K-means image clustering.

Parameterized Floating-Point Modules 31 October, 2001

page 26

References

IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE Std 754-1985, May 21,1991

D. Goldberg, "What Every Computer Scientist Should Know About Floating-Point Arithmetic", ACM
Computing Surveys, Vol 23, No 1, March 1991

I. Sahin, C.S. Gloster, and C. Doss, "Feasibility of Floating-Point Arithmetic in Reconfigurable
Computing Systems", 2000 MAPLD International Conference,
http://rk.gsfc.nasa.gov/richcontent/MAPLDCon00/Papers/Session_E/E2_Sahin_P.pdf

Annapolis Micro Systems, Inc., "Floating-Point Math Library", Technical Data Sheet Doc # 12763-0000
Rev 1.7

I. Sahin, and C.S. Gloster, "Floating-Point Modules Targeted for Use with RC Compilation Tools", June
2001, http://www4.ncsu.edu:8030/~isahin/papers/DACPaper.pdf

N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of Floating Point Arithmetic on FPGA
Based Custom Computing Machines", EEE Symposium on FPGAs for Custom Computing Machines,
Napa, California, Apr 1995., http://www.ccm.ece.vt.edu/papers/quantitative_text.pdf

D.A. Petterson and J.L. Hennessy, "Computer Architecture a Quantitative Approach", Second Edition,
1995

B. Fagin and C. Renard, "Field Programmable Gate Arrays and Floating Point Arithmetic", IEEE
Transactions on VLSI Systems, Vol 2, No. 3, September 1994

V.P. Nelson, H.T. Nagle, B.D. Carol and J.D. Irwin, “Digital Logic Circuit Analysis and Design”,
Prentice-Hall, 1995.

	Contents
	1.0	Introduction
	2.0	Schedule and Progress
	3.0	Floating Point Formats
	4.0	Floating Point Modules
	4.1	Denormalize (denorm)
	4.2	Round and Normalize (rnd_norm)
	4.2.1	Normalizer (normalizer)
	4.2.2	Rounding Addition (round_add)

	4.3	Addition (fp_add)
	4.3.1	Swap (swap)
	4.3.2	Shift and Adjust (shift_adjust)
	4.3.3	Add/Subtract (add_sub)
	4.3.4	Correction (correction)

	4.4	Subtraction (fp_sub)
	4.5	Accumulation (fp_acc)
	4.6	Multiplication (fp_mul)
	4.7	Multiply Accumulate (fp_mac)
	4.8	Other Modules
	4.8.1	Single Precision Adder (single_precision_adder)

	5.0	Simulation and Testing
	5.1	Denormalize (denorm)
	5.2	Round and Normalize (rnd_norm)
	5.2.1	Normalizer (normalizer)
	5.2.2	Rounding Addition (round_add)

	5.3	Addition (fp_add)
	5.3.1	Swap (swap)
	5.3.2	Shift and Adjust (shift_adjust)
	5.3.3	Add/Subtract (add_sub)
	5.3.4	Correction (correction)

	5.4	Subtraction (fp_sub)
	5.5	Multiplication (fp_mul)
	5.6	Other Modules
	5.6.1	Single Precision Adder (single_precision_adder)

	6.0	Synthesis Results
	7.0	Future Work
	8.0	Conclusions
	References

